If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63z=49+8z^2
We move all terms to the left:
63z-(49+8z^2)=0
We get rid of parentheses
-8z^2+63z-49=0
a = -8; b = 63; c = -49;
Δ = b2-4ac
Δ = 632-4·(-8)·(-49)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-49}{2*-8}=\frac{-112}{-16} =+7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+49}{2*-8}=\frac{-14}{-16} =7/8 $
| 2^x-1=1024^x | | 42+x=28 | | M-2n=9 | | 2x-75-x,11-5x=1 | | 5-2x/3=x/6-5 | | 15x+24=69 | | 2x+3/4-3=x-4/3-2 | | 20p=-10 | | 2(3-x)=x/5+4 | | 20p=10 | | (8m-2m+3m+5m-6m)=0 | | 5/9y=0 | | (X+3)(2x+2)=(2x-1)(x+5)-2 | | 5/4v-2/3=1/3 | | (X+3)(2x+2)=(2x+2)=(2x-1)(x+5)-2 | | 2a-99=29 | | 7+x=14+4x | | 10n^2-410n+3480=0 | | 0.5=x/4-3 | | 2(x-1)-2(3x-2)=14 | | 2(x-3)=3(x-11) | | 10/r=3/9 | | 3(x-7)+(x-4)=15 | | 40-2x^2=8 | | x²/3=12 | | 0.3x-1.8+0.2x=0.7 | | 9f^2+40f+480=0 | | 5y-2(2y-7)=2(3y-1) | | 11(x+2)=7(2x-2) | | 6x-9x=4+5 | | {5}{3}+3n=1 | | 9m+43=42 |